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THE ONE-DIMENSIONAL T 
WITH 

SUMMARY 

ME-DEPENDENT INTERACTION OF A SATELLITE 
HE IONOSPHERIC PLASMA 

Ba ckg ro u n d 

The time-dependent equations describing the 
one-dimensional interaction of a streaming plasma 
with an infinite flat plate were derived and solved 
numerically by a modified Euler  method. 
were obtained for: (i) the case  of a plate with no 
initial surface charge at an altitude of 200 km and 
(2) the transition f rom equilibrium conditions at 
200 km to an equilibrium state  a t  3000 km. 

Solutions 

In general the surface charge density was found 
to overshoot to a peak value ear ly  in the interaction, 
as a result  of the initial rapid collection of electrons,  
and slowly decay toward an equilibrium value a s  the 
effect of the ions became more pronounced. 
200 kin the sheath thickness was found to be 0 . 3 3  c m  
and the relaxation time 1.42 ps ,  while a t  3000 lcm 
the sheath thickness and rekyation time were 7 . 3  
cm and 30. 5 p s  respectively. 

A t  

I NTRO DUCT I ON 

P u r  pose 

The net result of the interaction of a body, 
whether moving o r  stationary, and a plasma, in 
which the body is immersed ,  is a charge accumu- 
lation on the surface of the body. The electric 
potential associated with this charge in turn affects 
the surrounding plasma, creating a space charge in 
the disturbed or sheath region near the body. 

In this report ,  a theoretical treatment of the 
mechanisms that produce the electric potential 
associated with a body moving through a collision- 
less ionospheric plasma is undertaken. 
attention is given to the time dependence of the 
electric field with the intention of investigating the 
behavior of the various sheath parameters  as the 
body moves rapidly through nonuniform regions of 
the plasma. A system of equations that describes 
a one-dimensional model of the problem is established, 
and numerical methods a r e  invoked to find a solution. 

Special 

The rea lm of plasma physics dealing with 
satellite-ionospheric interactions has grown in 
interest  along with the ever increasing application 
for  and complexity of ear th  satellites. The sheath 
effects mentioned above can significantly a l ter  the 
performance of onboard instrumentation and, 
therefore,  must be taken into account in the planning 
and interpretation of satellite-borne experiments. 
Correspondingly, a grea t  volume of work has been 
done in this area.  

To briefly review development in the field, we 
should first consider an early paper by Jastrow 
and Pea r se  in which the effects caused by the 
inotion of a body in a plasma a r e  studied, assuming 
a spherically symmetrical  potential distribution 
and a uniform, undisturbed ion density [ i]  . These 
assumptions have since been found to be incorrect 
so that the above approach is good only as a f i r s t  
approximation. In a la ter  paper,  K r a u s  and Watson 
used kinetic equations to calculate the potential 
and ion number density around a point-like charge 
moving through the ionosphere [ 2 ]  . This would 
imply that the body radius is much smal le r  than 
the Debye radius. However, i t  has been found that 
the Debye radius in the ionosphere is considerably 
smaller than the dimensions of a typical satellite. 
A third paper, published by Davis and H a r r i s  and 
dealing with the same problem, is of interest ,  
because numerical methods were used to solve 
simultaneously the equations of potential and the 
motion of ions near a body moving in a plasma [ 31. 

Although these papers provide a good foundation 
in the a r e a  of satellite-ionospheric interactions, 
none of them attack the time-dependent problem. 
In fact, in searching the l i terature for information 
on the problem treated herein, i t  w a s  found that 
relatively little had been done toward the develop- 
ment of a suitable time-dependent theory of the 
satellite-ionospheric interactions, most of the 
work having dealt with all aspects of the steady- 
state interaction for  various vehicle geometries. 

Some work of a time-dependent nature has been 
done by G. S. Kino and associates at Stanford 



University [ 4,5,6,7]. However, this work deals 
with the problem of transmitting rf waves through 
a discharge plasma and does not apply directly to 
the problem treated herein. 
have also done work of a time-dependent nature in 
which they found a plasma disturbance caused by 
high-frequency electromagnetic field fluctuations 
near  cylindrical bodies slowly moving through a 
plasma IS]. This work applies only to slowly 
moving bodies. This is not a good assumption fo r  
satell i tes and, further,  would change the nature of 
the ion interaction since their thermal  energy 
would become important. 

Getmantsev and Denisov 

Two particular cases  of the time-dependent 
satellite-ionospheric interaction will  be treated in 
detail in this report. F i r s t ,  there is the case in 
which the satellite has  no initial surface charge and 
is assumed to be a t  zero  potential. Assuming an 
equal density of ions and electrons in the undisturbed 
plasma, the more mobile electrons will  initially 
collect on the surface of the satellite a t  a greater 
ra te  than the ions. 
potential on the satellite that will, in turn, slow the 
incoming electrons and accelerate the ions, thereby 
increasing their relative ra te  of incidence. Hence, 
a s  the ion flux a t  the surface builds, the potential 
wi l l  become more negative a t  a decreasing rate until 
an equilibrium condition is reached in which the ion 
and electron fluxes a t  the surface of the satellite 
a r e  equal. 

This wi l l  c rea te  a negative 

In the second case treated herein the interaction 
is initially taken to be at  some preestablished 
equilibrium state. A step change is then made in 
the plasma parameters  and the interaction moves 
to a new equilibrium state. 

The general behavior of the interaction in this 
case is similar to that described previously with 
the exception that there is an initial surface charge 
on the satellite and, hence, an electric f ie ld  that 
acts on the plasma. 
field on the plasnia produces the equilibrium state 
of the previous case. 
field increases  or  decreases  to become compatible 
with the new parameters .  

The effect of the electric 

F rom this point, the electric 

Approach 

In order  to attack the problem, i t  was necessary 
to make several  assumptions. 
body or  satellite under consideration to be an infinite 
flat plate, oriented perpendicularly to the plasma 

F i r s t ,  by taking the 

flow, the problem is effectively reduced to  one 
dimension with a corresponding reduction in com- 
plexity of the equations. 
physically to mean that only a very small  region at 
the stagnation point on the satellite will  be con- 
sidered. Consequently, the electric field, and 
other sheath parameters ,  can be observed only 
in the forward direction. However, the problem 
is s t i l l  physically meaningful, since i t  is conceivable 
that an infinite flat  plate would be a reasonable 
approximation of a smal l  probe located at  the 
stagnation point of a satellite. 

This can be interpreted 

To facilitate the formulation of the problem, we 
take the inverse of the actual physical situation and 
let  the plasma s t r eam into a stationary plate with 
the satellite velocity. This will not affect the solu- 
tion since i t  is the relative velocity of the satellite, 
o r  plate, and the plasma that a r e  important. It 
should also be noted that any experimental verifica- 
tion in earthbound laboratories wi l l  require this 
arrangement, Since the ion mean thermal velocity 
in the ionosphere is an order  of magnitude less than 
typical satellite velocities, the random thermal 
motion of the ions will  be neglected. The ions, 
then, wil l  al l  have the same velocity a t  any time and 
position. 
ionospheric electrons is much greater than typical 
satellite velocities, and w e  therefore assume them 
to have a Maxwellian velocity distribution. Con- 
sidering the smal l  ratio of electron to ion masses ,  
i t  is reasonable to assume an instantaneous relaxa- 
tion of the electrons. 

The mean thermal velocity of the 

In this treatment w e  omit the effects of the 
earth 's  magnetic field, neutral particle collisions, 
and corpuscular radiation (photoelectric effect) . 
Since we a r e  dealing with a collisionless plasma 
in a very small  region near the irontal surface of 
a satellite, these components of the interaction w i l l  
produce relatively small  effects compared with the 
electric potential resulting from differential charge 
flux to the surface. 

Two further facts about the ionospheric plasma 
should be brought out before going further into the 
treatment of the problem. 
neglecting the ion thermal velocity, we effectively 
assume zero  ion temperature, and therefore only 
the electrons will  be affected by temperature. Any 
further references to temperature will, therefore, 
be made to the thermal energy of the electrons. 
Secondly, the undisturbed, ionospheric plasma is 
macroscopically neutral so that a t  any point f a r  
f rom the plate the electron and ion number densities 

F i r s t ,  a s  a result  of 

2 



will be equal. Some feeling for  the validity of these 
and the other assumptions made in this chapter can 
be obtained by observing the ionospheric parameters.  
Some typical values are given in Table I. 

In t e rms  of electrical  charge, the ionosphere 
can be considered to be a two-component gas con- 
sisting of singly charged ions and electrons. A 
separate Boltzmann equation must be applied to each 

TABLE I. 

Parameters  

Satellite Velocity (km/sec) 

Ion-Electron Density (m-3) [ 91 

Temperature (KO ) [ 91 

Ion-Electron Mean F r e e  Path (m 

Neutral Mean F ree  Path (m)  [ 9 ]  

Debye Length (cm) [ 9 ]  

Ion Composition [ 101 

Average Ion Mass 

VS/Vi 

DER IVATl  ON OF EQUATIONS 

Time- Dependent Equations 

IONOSPHERIC PARAMETERS 

Altitude (km) 

200 

7.78 

(3-50) x I O i o  

450-800 

90 

80 

0.2-1 

NO', O:, 0' 

24 

13 

The ionospheric plasma must be treated as a 
collection of discrete particles ra ther  than as a 
continuous medium. It follows, then, that fluid 
flow equations used in hydrodynamics and aero- 
dynamics cannot be applied to this type of problem. 
Nor is i t  feasible to follow dynamic trajectories of 
individual particles,  except in very limited cases.  
These difficulties can be circumvented, however, by 
use of the Boltzmann equation, which provides 
accurate statist ical  information about the distribution 
function and average expected values of quantities 
describing particle behavior [ 111. 
less  form, the Boltzmann equation is 

In i t s  collision- 

af a af+ c-+-  (fF) = O  
a t  ax a c  

where f is the distribution function, c is velocity, 
and F is acceleration resulting f rom external 
forces.  

300 

7.73 

(10-20) x 1011 

1000 

70 

1000 

0. 14-0.7 

Ot (98';), Nt 

16 

I1 

3000 

6.  52 

7~ io9 

4000 

3 x io4 

2 x 101: 

4 

He+ 

4 

4 

species of a multicomponent gas 1121. We wi l l  
therefore have two equations, one that describes 
ion velocity distribution and another for  electron 
velocity distribution. 

A s  pointed out previously, the electron thermal 
velocity is much greater  than the satellite velocity, 
and i t  is therefore reasonable to consider this 
component of the ionospheric plasma to be a t  
equilibrium. In this case,  the electron behavior 
can be described by the Maxwell-Boltzmann dis t r i -  
bution function [ 13,141. In one dimension, this 
function is of the form,  

where N is the total number of particles in the 
system, k is the BOltZmann constant, and + is 
the potential energy of the system. 
solution to the steady-state Boltzmann equation. 
use as a time-dependent solution assumes instan- 
taneous relaxation of the electrons. 

This is an exact 
Its 

3 
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We now consider the ions. A s  stated previously, Notice that the third t e r m  reduces to 
the ion thermal  velocity is much smal le r  than the 
satellite velocity and can be neglected. The ions Fn.6(c-ui) 0 which is zero a t  both limits. 

1 

will  then have a uniform velocity distribution in 
space and time, which can be written in the form,  

The remaining te rms  have values only when 
c = -u.. The foregoing expression therefore 

reduces to 
1 

f .  (x. t , c )  = ni(x,  t) 6 
1 

where u is the average ion velocity and depends 

on x and t ,  and n.  is the ion number density 
i 

and also depends on x and t. 

Multiplying the Boltzmann equation (1) by a 
constant or  any function of ion velocity and inte- 

o r  

, .  
grating over velocity space, we can obtain the (4) 

equations of transfer,  which a r e  more easily 
solved than the Boltzinann equation [ 151. Using the 
ion mass,  in;, a s  the multiplier and performing 

This is the conservation of mass ,  o r  continuity 
equation for ions. 

1 

the appropriate integration, we obtain 

or  

Since x and t a r e  independent variables,  the 
partial  derivatives of these variables can be 
brought outside the integral. 
operation and replacing f .  by c x p r c s s i o n  ( 3 ) .  w(' 
obtain 

Performing thi q 

1 0 5 [ni I' 6 ( c +  ui) dc 
-m 

0 a 
ax + - [ni !m cd(c  + u.) 1 

By multiplying the Boltzinann equation (1) 
by 1/2 m.c2 and integrating over velocity space 

in a s imi la r  manner, we can obtain the conserva- 
tion of energy equation for  ions. The integration 
is car r ied  out a s  follows: 

-00 

The acceleration, F, results f rom the electric 
field associated with the plate and is therefore 
qE/mi , where E is a function of x and t. The 

acceleration, F, can therefore be taken out of 
the integral since in this case i t  is not a function of 
velocity. This yields 

4 



0 

-m 

Note that the t e rm c26 ( c  - ui) 1 !m is zero  a t  both 

l imits,  and the integral is 2 ( -u . ) .  The preceding 

expression now simplifies to the form, 

Xq 
in. 

+- E ( x , t )  n . ( x , t )  u . (x , t )  = 0 

where we have replaced F by qE/m..  This 

equation can be simplified if we f i r s t  expand the 
t e rms  to obtain 

- u2- a (n.u.) + - 2q Eni ui = 0 . 
1 ax 1 1 in. 

Rearranging t e rms  we get 

a 
1 1 a t  2n.u. - (u i )  + u: 

- Xn. u?- a (u.)  + - 2q En. u. = 0 
1 1 ax 1 111. 1 1 

Now the t e r m  in brackets is exactly equation (4), 
which is equal to zero. We can a l so  divide the 
remaining t e rms  by 2n. u .  to obtain 

1 1  

-+ [ u i ( x , t ) ]  - Ui(X,t) -jy U i ( X , t )  

a [  I 
(5) 

CA 
m. 

+- E ( x , t )  = 0 , 

which is the conservation of energy equation 
for  ions. 

In the above derivations, the limits of integra- 
tion a r e  taken f rom -m to 0, because the ions 
move in the negative x-direction when traveling 
toward the plate. The 0 to +m range is not included 
because all ions that s t r ike  the conducting plate a r e  
absorbed o r  neutralized. 
s t r eam toward the plate and none a r e  reflected, 
there can be no positive component of the ion 
velocity distribution (Fig. I). 

Since all ions initially 

The two foregoing conservation equations 
contain the three dependent variables, n. u and 

1' i' 
E. A third equation i s ,  therefore, required to 
obtain a solution. This is provided by Gauss' 
equation, which in its general form is 

In the abovc equation p is the net charge density 
per unit volume. 
wave equation because the potential retardation 
t e rm,  l /c2 (a2@/at2) ,  is assumed to be negligible 
for this case.  

Note that we have not used the 

The net charge density i s  obtained by adding 
the total charge density of ions and electrons as 
follows : 

Here, Z represents the number of charges per  
ion. However, since we assume only singly 
ionized particles to exist ,  2 will  have a value of 
unity. The number densities, n. and n a r e  

average values. 
n. 

equations; however, the electron average number 
density can be found f rom expression (2 )  as follows 
[16]: 

e '  
The ion average number density, 

must be obtained f rom the solution of the 
1' 

5 



/ 

m 

n = f e  dc 
e -m 

CONDUCT1 NG FLAT PLATE 

Figure 1. Plasma s t r eam and plate configuration. 

( me e-+/kTe( Z T k r e  

m = N .- 
27rkTe 

-+/kTe 
n = N e  e 

The potential energy for electrons,  6, is equal 
to -q+ where + is the electric potential. This 
can, in turn,  be written in t e r m s  of the electric 
field a s  follows: 

Then the electron number density can be written 
in the fo rm 

m s E ( x , t )  dx 
kTe x1 n ( x , t )  = N e 

e '  

6 



Substituting equation (8) and equation (7) into 
equation (6), we obtain Poisson's equation in the 
fo rm 

L -I 

(10) 
which is the desired boundary condition. 

The set of initial conditions wi l l  depend on the 
particular case being solved and w i l l  therefore be 
given la te r  in the report  ra ther  than here.  

The boundary conditions for  the system of 
equations (4), (5), and (9) can be described in 
t e r m s  of the electric field, which must go to z e r o  
f o r  any set of initial conditions and t ime as the 
distance f rom the plate approaches infinity. A t  
the plate, the value of the electr ic  field wi l l  depend 
upon the initial conditions. 
with time can always be represented by the differ- 
ence of the ion and electron fluxes to the plate. 
Therefore,  

However, its change 

Nondi mensiona I T i  me- Dependent Equations 

The s e t  of equations derived in the previous 
section wi l l  be more  manageable in the numerical  
analysis if they a r e  nondimensionalized. We 
define nondimensional density, D = n./N; velocity, 

V = u./V . distance f rom the plate, y = x/L; 

t ime, T = t/i-, and electric field E = E/[, where 
N is the undisturbed ion number density, V is 

the satell i te velocity, and L, i-, and 5 must be 
determined. In t e r m s  of these variables,  equation 
(4) takes the form 

A 1 s' 

The average values, n and u can be 

represented a s  follows: 
e' 

m 
Now if we le t  i- = L/V 
tion becomes 

then the previous equa- 
S' 

This was shown previously in equation (8) .  
Similarly, 

which is the nondimensional continuity equation. 

Now consider equation (5).  Upon substitution 
of the nondimensional variables,  it takes the fo rm 

where 

= (kT /27rm )'I2 . 
e 

Now recal l  that i- has  been defined as L/V 

Making this substitution leads to the form, 
S' 

Now, f r o m  Gauss' Law i t  can be shown that 
E = U/Q [ 171. Applying this and the two 
expressions for  n and u found previously, 
we obtain e 
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By defining o! = (q<L)/  (m.V ’) where o! deter- 

mines the amount of effect  the electric field has  on 
ion velocity, we obtain the following nondimensional 
f o r m  of the energy conservation equation: 

1 s  

Similarly,  equation (9) takes the following form: 

r 1 

The exponent must be dimensionless, so we define 
5 = kT /qL. Substituting this definition of 5 into 

the coefficient of the t e r m  on the right s ide of the 
equation yields q2NL2/(q,kT ) . This can be made 

dimensionless by defining L = w T e / q ’ n .  The 

e 

e 

above equation now becomes 

which is the nondiniensional Poisson’s equation. 

Finally, equation (10)  must  be nondimen- 
sionalized. Malting the variable substitutions, i t  
takes the following form: 

Recall now that T = L/V so that the coefficient 

of the te rm on the right side of the equation beconies 
(qNL/Eo)/<, which is unity since 5 = kTe/yL and 

L = 

above equation becomes 

S 

e o  kTe/q2N. Now if we le t  7 = $V the 
S ’  

which is the nondimensional fo rm of the boundary 
condition at the plate. 

The fac tors  L, 7, and < have all been 
defined. Now each can be expressed in t e r m s  of 
the plasma parameters .  

L = 4 eo kTe/q2N. Using this expression for  L 

in  the expression for  T ,  we obtain 

T = m q Z N V s 2 .  Similarly, 5 = 

We already have 

and cy = 

The 

kTe/miVs2. 

Steady- State S i  mpl i f icat  ion 

equations describing the steady-state 
interaction can be derived directly f rom the time- 
dependent equations (11) , (12 ) ,  (13), and (14) 
be sett ing all derivatives with respect to time 
equal to zero.  Thus equation (11) becomes 

By dropping the time derivative in equation (12)  
we get 

A dV 
@ E  = v- 

dY 

Integrating both s ides  of this equation with 
respect  to y we obtain 

1 1 
00 

dy : - / V’dV’  
V o! 

Y 

o r  

where P denotes the nondimensional electric 
potential. 
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Equation (13) takes the form 

m 

j” GdY 
Y = D - e  d$ 

dY 
_. 

o r  in t e r m s  of the nontliniensional, e lectr ic  
potential, P, it is 

Equations (15), ( l G ) ,  and (17) can now be 
combined into a single equation for  the electr ic  
potential, 
DV = constant. This constant is required to be 
unity by the boundary conditions on ion density 
and velocity a t  infinity. 

Notice that equation (15) implies that 

Then we obtain the solution 

The integral of the electr ic  field, in this equation, 
is just  the electric potential at the origin, o r  plate, 
which will be designated as Po. Making this 
sitbslitution and solving for  Po we find that 

- 
(20) 

p, = - 1 In (DV/V) 
2 

which is the potential on the plate f o r  a given set 
of plasnia parameters .  

The solution of equations ( I G ) ,  (17), (181, 
(19) ,  and (20) by numerical methods is s impler  
and less subject to e r r o r  than a numerical solution 
of the time-dependent equations of the previous 
section. 
check on the degree of approach to the steady-state 
solution of the time-dependent equations. 

Their  solution will therefore provide a 

APPLICATION OF NUMERICAL METHODS 

Modif ied Eul e r  Method 
Equation ( l t i )  can be solvctl for  V ( y )  to obtain 

.J 1 - 2 Z - E  Iteplacing v 
this expression we obtain 

in ecluation (18) with 

This expression can. in turn,  be used to replace 
I) in equ:ition (17) to obtain 

which provides an  equation of P as a function of 
y and the plasnia p:wanieters. 

’The boundary condition a t  the plate given by 
equation (14) can also be used in the steady-state 

solution. Equating aE/a t  to zero ,  we obtain 
A 

00 

a J’ 6 dy 

= o  0 D V - V e  

Given a tlifferential equation and i t s  solution 
a t  s u i n e  initial o r  bountlary point, thc solution cxn 
be extrapolated to a neighboring point by  use of the 
Taylor serics. 
f 0 1’111 

This i s  an infinite serics of the 

1 1 Yn+l = Y + M h + 7 M’ h2 + - M” h3 + . . . 
n n - n  G n  

(21)  

where M - (t lY/dx) M’ ( ~ l ~ Y / t k ~ ) ~ , .  . . , all n’ n 
of which are eva1u:ited a t  the point x 

where h - x - x Although this method is n-i  n’ 
accurate  if h i s  sufficiently small ,  i t  i s  not 
frequently used in this form since it usually requires  
more work than other niethods. It is useful, 
however, in finding the f i r s t  few points of a solution, 
which, as will be seen,  cannot always be obtained 
f rom other methods. 

- so + nh, n 

The method used herein is a modification of the 
Eu le r  method. 
the Eulcr method itself, which is the oldest and most 
straightforward method of analysis, but is also 
relatively crude and inaccurate. 

To descr ibe i t ,  we begin first with 
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If the increment, h,  in the Taylor series 
(21) is taken to be much l e s s  than unity, the f i r s t  
two t e r m s  wi l l  provide reasonably good accuracy. 
The solution at the neighboring point then becomes 

yn+ i = Y n + M n h  . (22 )  

The solution is expanded to  increasingly remote 
points f rom the initial point by the process 

- 
yn+2 - yn+i + Mn+ih 1 

This process  is known as the Euler method. 

While the f i r s t  few points can be made 
sufficiently accurate by picking h small  enough, 
as  the solution progresses ,  the e r r o r  will  become 
increasingly larger .  
differential, Mn, (the slope of the solution curve 

at x ) is used to calculate the solution Y a t  n n+ 1 
X The calculation of Y wil l  therefore be 

in e r r o r  by an amount equal to the difference in the 
slopes a t  x and x multiplied by the incre- 

ment. 
is the sum of the e r r o r  in calculating Y 

yn+ 1 n+ 1 
and the e r r o r s  in calculating all previous solutions. 
The fallacy in this method is discussed very well 
by Scarborough [ 181. 

This occurs because the 

n+i' n+ 1 

n+ 1 n'  
Further  the total e r r o r  in the solution 

By using the modified Euler method, the 
cumulative e r r o r  in the previous method is avoided. 
Here an average value of the differential is used in 
calculating each succeeding point. The extrapolated 
solution Y is therefore of the form n+ 1 

1 Y + -  XI + M  
n 2 ( n n + i ) h  

where M is the derivative of Y a t  x and 

Mn+i is the derivative of Y at x 

requires  the use of a l e s s  accurate solution of 
such as equation (22) ,  which is inserted 

'n+ 1 

n n 
This method 

mi' 

into the differential equation in o rde r  to  find tlie 
value of Mn+l. This value i s ,  in turn,  used to 

calculate a new and more  accurate  value of Y 

f r o m  equation ( 2 3 ) .  The process  can be repeated, 
using the new value f o r  Y until the desired 

accuracy is attained [ 191. 

n+ i 

n+l '  

The trouble with the above method l ies  in the 
need to determine the derivatives of each variable 
involved. F o r  the complex se t  of equations derived 
in the DERIVATION OF EQUATIONS section of 
this report ,  this is no easy matter.  However, 
the s a m e  general  averaging effect can be obtained 
in the following way, which, although l e s s  accurate,  
is more straightforward and eas ie r  to apply to the 
problem at hand. 

F i r s t ,  we observe that the solution Y can 
n- 1 

be obtained by replacing h by -h wherever it 
appears  in equation (21). Subtracting the resulting 
equation f rom equation ( 2 1 ) ,  w e  obtain 

= Y + 2M h + -  2 M " h 3 +  .. 
n 6 n  n- 1 yn+ 1 

If h is again taken to be l e s s  than unity and t e rms  
of order  h3 and higher are dropped, we obtain 

Yn+l = Y n-1 + 2Mnh (24 )  

The accuracy of this formu.1ation is much improved 
over that of the unmodified Euler method shown in 
equation (22) .  This is evident by the fact that the 
Euler method neglects all t e rms  in the Taylor 
s e r i e s  of o rde r  hZ o r  higher, whereas this method 
only drops t e r m s  of h3 o r  higher. 

The extension of the above method to par t ia l  
differential equations is ra ther  straightforward, 
although stability is a much greater  problem here,  
and some c a r e  must be exercised to ensure that the 
solution behaves in a stable manner [ 201. 

The partial  derivative of Y with respect  to 
x a t  x and t has the fo rm 

n k 

- Y  

2 n X  

'n+l,k n - l , k  
(25) 

n 
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which is of the same  f o r m  as equation (24). It 
would at f i r s t  appear  that the time derivative of Y 
could be written in  the same form. However, this 
would require  the s torage of three a r r a y s  in the 
computer. Instead, the following fo rm h a s  proven 
to be more useful: 

+ Y  1 - 
yn,k+l - 2 Yn+i ,k  n-1,k 

A t  
( 2 6 )  

(5) n = 

Here,  the second value in the finite difference has 
been averaged over two increments within the same 
time frame.  This formulation will be stable pro- 
vided we choose A t  according to the relation 

where u is the character is t ic  velocity involved. 
This is equivalent to requiring A t  to be smal le r  
than the time required for  a quantity to cross the 
A s  grid 1211. 

that the modified Euler  method cannot be used to 
find the f i r s t  two points of the solution. 
of difference formulas will, therefore, be required 
for  any given equation. The first s e t  will be based 
upon the relations (28) and (29) and will be used 
to find only the first two points in x for  each time 
frame.  
found f rom the second set of equations, which will 
be based on relations (25) and (26).  

Two se ts  

The solution at all other points will be 

F i rs t ,  consider the steady-state equations 
given in the Steady-State Simplification section. 
The form of the potential is given by equation (19) 
which we repeat below: 

F o r  this equation, the accuracy of the unmodified 
Euler  method given in equation (22)  was found to 
be sufficient. An extension of equation (22)  to 
the second derivative yields 

For the solution a t  a boundary whcre n = 0 
and, therelore,  the subscr ipt  (n-1) has no 
mcnning, we require the lcss accurate  forms ,  

Applying equation (30) to equation (19) we find 

and 

which are based on the unmodified Euler method and 
will, in general ,  be used only f o r  the first two t e r m s  
of the solution. 

Fi n it e D i f f  e r en  ce Eq uat ion  s 

The numerical equations can now be formulated 
by applying the appropriate relations in the foregoing 
section to the equations developed in the DERIVATION 
OF EQUATIONS section. Before going on, however, 
i t  should be pointed out, as in the Modified Euler 
Method section and as is apparent f rom equation ( 2 5 ) ,  

solving Cor P we obtain n+ 1 

( 3 1 )  

which will provide a solution for  the potential at all 
spatial  points, with the exception of the f i r s t  two 
a t  the origin. The ion velocity can be found f rom 
equation (16) : 

Solving this equation f o r  V and writing the variables 
as functions of y we obtain, 

n’ 
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vn = d i - 2 a P  (32) 
n 

F r o m  equation (18) we have the following relation 
f o r  density: 

Finally, the steady-state potential on the plate, 
needed to give the solution the cor rec t  magnitude, 
can be found f r o m  equation ( 2 0 ) ,  which written as 
a function of y ,  is of the form 

The equations (31), ( 3 2 ) ,  ( 3 3 ) ,  and (34) can 
now be progranimed f o r  a nunierical solution to the 
steady-state case.  
Appendix A .  

This program is given in 

W e  consider now the time-dependent equations 

F o r  convenience 
given in the Nondimensional Time-Dependent 
Equations section of this report .  
we repeat equations (1 1) , (I?), (IS), and (14) 
below: 

W 
A 

Expressing these equations in the difference forms  of 
equations ( 2 8 )  and ( 2 9 )  we obtain 

12 

A A 
- E  En+l ,k  ~ n , k  

AY 

and 
A A 

( ‘n+l,k - v  n,k) 

- ‘n AY 

( 3 5 )  

Solving equations ( 3 5 ) ,  ( 3 6 ) ,  ( 3 7 ) ,  and (38) for  the 
appropriate variables,  we find the following s e t  of 
equations: 

A 
- D E  A T  (40) n,  k 

I111 



A A 
= E  

E O , k + l  0 , k  
I - -  

'n,k+l- 2 ( V n + l , k ~ V n - l , k  
ca 

A 

- n=O Aj  AT(42; 
l 'O,kVO,k-V e 

+ 

The above set of equations is used to obtain solutions 
to the variables a t  the plate boundary in all time 
f rames  . 

By applying the difference formulations in 
equations (25) and (26) to equations ( I I ) ,  (12), 
and (13), we obtain 

- 'n,l< (43) 

m 

where any quantity W is defined as n. IC 
1/2 ( w ~ + ~ , ~ <  + w ~ - ~ , ~ ~ )  . Solving these equations 

for  the appropriate variable we obtain the following: 

Dn, I<+ 1 

"n+l, k - vn-l, k 
+ v  n, k ( =Y 

A 
- c u E  A T  

n, k 
(47) 

This s e t  of equations can be used in any time f rame 
to find a solution to the problem a t  all points in 
space with the exception of those points on the plate. 

The above s e t s  of equations, (39 ) ,  (40) ,  (41), 
and (42)  and (46) ,  (47) ,  and (48) ,  can now be 
progranimed for  a numerical solution of the time- 
dependent problem. 
Appendix B. 

This program i s  included in 

SOLUTION OF CASE I 

Appl icat ion of Equations a n d  
Bounda ry Condi t ions 

In this f i r s t  case  to be treated i t  is assumed 
that the conducling plate initially has  no eleclr ic  
potential. The plate is then allowed to float, i t s  
potential being determined by the ratio of the 
impinging ion and eleclron f l u e s .  The physical 
parameters  governing this particular case  a r e  l isted 
in Table 2. The boundary conditions imposed on the 
equations for  this case  are as follows: 

a. Initially, the parameters  of the undisturbed 
plasma will apply at all points in space.  
basis ,  the electric field is zero  everywhere while 
the nondiniensional ion densily and velocity are both 
unity. 

On this 

b. The ion densily and velocity must a t  any time 
go to their  undisturbed values (unity) and the electr ic  
field to zero  a t  very large distances from the plate. 

c. The electr ic  potential on the plate is given by 
the relation in equation (34) for  the steady-state 
equations, and the electric field at the plate is given (46) 

+ V  
n, k 
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Symbol 

- 

N 

Te 

m. 

- 
U 

vS 

L 

5 

0.276 

24.973 

0.3548 x 

- ___- 

TABLE 2. CASE I PARAMETERS 

Parameter  

Altitudea (km) 

Ion-Electron Density (mq3) 

a Temperature (KO ) 

a Average Ion Mass (Amu) 

b 
Average Electron Velocity (km/sec) 

Satellite Velocitya (kni/sec) 

b Debye Length (cni) 

Potential Factor (volt/ni) 

a 

b 

b Time Factor ( sec )  

~- 
a. F rom Table 1 
b. Calculated Values 

a t  any time by equation (42) for  the time- 
dependent equations. 

To determine the other parameters ,  such as 
nondimensional electron velocity, Debye length, etc., 
we must re fer  to specific values of the plasma 
parameters  given in Table 1. With this information, 
the values-of the nondimensional average electron 
velocity (V)  , Debye length (L) , characterist ic 
time (7) , nondimensional potential factor (< ) ,  
and a factor that determines the effectiveness of 
the electric body force on the ions ( a ) ,  can be 
determined f rom relations given in the Nondiinen- 
sional Time-Dependent Equations section. These 
values a re  given in Table 2 along with the data froin 
which they were calculated. 

The steady-state program (Appendix A) is 
relatively simple, and, in principle, i t  can he made 
a s  accurate a s  desired by properly choosing the 
increment s ize ,  allowable e r r o r ,  and the magnitude 
of the assumed potential. Accuracy of more than 
four significant figures is unnecessary here ,  how- 
ever ,  since the general behavior is important and 
higher accuracy would not visibly al ter  plots of the 
data. This is the more accurate of the two pro- 
grams and should certainly be considered to give 
more  reliable steady-state values. 

200 

(3-50) x IOio 

450-800 

~ 24 

(3-50) x IOio 

450-800 

' 43.928 I 

The program for  the time-dependent solution 
(Appendix B) is considerably more complex, and 
an analysis of its accuracy is not so straighforward. 
Since it solves the partial  differential equations, 
it has finite differences in both time and position. 
As a result ,  the e r r o r ,  which would normally be 
associated with a finite difference treatment of 
ordinary differential equations of one variable, is 
compounded by the second difference relation. 
This is further complicated by the restriction 
equation (27)  places on the ratio of the increments 
of the two independent variables in order to attain 
a stable solution. This ratio was found to be 
extremely cri t ical .  I t  should also be noted that, 
because finite differences a r e  used, the solution 
consists of smal l  step-like increments rather than 
a continuous curve. The consequence of this can 
best  be seen by taking the electric field as an 
example. Once the zero  boundary condition fa r  from 
the plate has been approached to within a cri t ical  
value, the next solution step, ra ther  than going 
smoothly to zero ,  c ros ses  over into the positive 
region. Zero  is missed because it is located only 
a fraction of an increment from the las t  step in the 
solution. However, once the electric field becomes 
positive, the solution becomes unstable and grows 
a t  an increasing rate.  

14 



The above effect is strictly a resul t  of using 
finite difference approximations and has  no physical 
foundation. However, to prevent its occurrence,  
it was necessary to force the electr ic  field to go to 
z e r o  whenever this situation took place. While this 
may seem arbi t rary,  i t  can be argued that this 
truncation does not affect the solution appreciably 
since the field is very close to z e r o  whenever the 
instability occurs. 

Case I Results 

In the discussion to follow, the t e r m  steady- 
s ta te  wil l  re fe r  to the solution of the steady-state 
equations of the Steady-State Simplification section, 
while the solution of the time-dependent equations 
of the Nondimensional Time-Dependent Equations 
section wi l l  be described as asymptotically approach- 
ing equilibrium (hereaf ter  re fer red  to as quasi- 
equilibrium). 

The plots of the quasi-equilibrium and steady- 
state electric potential given in Figure 2 a r e  seen to 
be in very good agreement. 
in this figure a r e  the resul ts  of the numerical  
solution of steady-state equations (31), ( 3 2 ) ,  ( 3 3 ) ,  
and (34) where the curves resul t  f rom the numeri- 
cal ,  quasi-equilibrium solution of time-dependent 
equations (39) ,  (40) ,  (41), (42) ,  (46),  (47) ,  and 
(48).  The quasi-equilibrium values occur at 
t = 1.42 ps and w e  use the standard definition 
Po/e for  sheath thickness. Hence, the quasi- 
equilibrium sheath thickness a t  200 km is found 
to be 0.33 cm. 

The data points given 

Figure 2. Spatial distribution of e lectr ic  
potential a t  200 km. 

The response of the ions to the electric field 
can be seen in Figure 3,  which shows the develop- 
ment in time of both the ion velocity and density, 
along with the steady-state solution. At t = 1.42 ps, 
the t ime dependent solutions (denoted by curves)  
have essentially reached their equilibrium values, 
and the discrepancy between the quasi-equilibrium 
curve and the steady-state solution (shown as data 
points) is attributable to round-off e r r o r  and the 
relatively large increment s ize  used. This wi l l  be 
discussed in more detail at the end of this section. 

F r o m  the steady-state continuity equation we 
have the requirement DV = I everywhere in space. 

Figure 3 .  Ion density and velocity distribution 

in space and t ime a t  200 km. 

Therefore,  a s  a check on the accuracy of the 
numerical  solutions, the quasi-equilibrium flux 
and steady-state flux a t  the plate (y = 0) and a t  
the edge of the sheath (y = 1.2) were compared 
with unity. 
flux differed from unity by 0.000579 and 0.0000152 
a t  y = 0 and 0.000505 and 0.0000520 a t  y = 1.2 
respectively, thus showing the solutions to have good 
accuracy, with the steady-state solution being 
slightly better as expected. 

The quasi-equilibrium and steady-state 

The growth of electric charge on the plate, 
given in Figure 4, indicates the charge behavior 
relatively ear ly  in the interaction, which primarily 
is due to electrons at this point. Initially, all 
electrons impinge on the plate and deposit charge 
there,  but as the plate potential becomes more 
negative, increasing numbers of electrons are 
repelled and the rate  of charge deposition decreases.  
The influence of the ions cannot be seen in  the early 
stages of the interaction shown here.  However, 
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Figure 4. Growth of surface charge on 
plate a t  200 km. 

they have a very pronouned effect that takes place 
much la ter ,  which will be discussed in the following 
chapter. 

Figure 5 shows the development of the electr ic  
potential in time and space and i l lustrates  very well 
the approach of the solution to an equilibrium value. 

An instability that occurred very early in the 
numerical solution of the time-dependent electric 
field is shown in Figures  6 and 7. This effect is 
s t r ic t ly  the resul t  of e r r o r  in the numerical cal- 
culations as is indicated by the difference in the 
two curves affected by changing increment s izes .  
Notice that decreasing the increiiient s ize  (Figure 7) 
confines the instability to a siiialler region in time 
and decreases  i t s  amplitude. 
instability dies out in a smal l  fraction of the 
relaxation time and is insignificant in the sheath 
region a t  a11 t imes.  

In both cases the 

In Figure 8, the constant dcnsity contours in 
space and time give sollie idea of the lag in the 
response of the ions. The dashed line represciits 
the position of the l / e  valuc (sheath) in spacc 
and time. 

Some additional comments should be made 
about the e r r o r  involved in the time-dependent 
calculations. This is a resul t  of both the numerical 
method and the computing niachine uscd. 
f rom the APPLICATION O F  NURIEIUCAI,  hIETHODS 
section that the modified Euler method uscd hcrein 
is an approximation of the Taylor series whew 
ternis  of d o r  higher are dropped. Hence, to 
have good accuracy, the increment, h, must be 
made much less than unity. 
present  case,  A T  and Ay iiiust be small ,  but, 

Recall 

Therefore, in the 

0 5 1.0 1 5  2.0 2 5  30 
N O M D l M E M S l O M A L  D I S T I N C E  F R O M  PLPTE ( Y )  

Figure 5. Growth of electric potential 
in spacc a t  200 kin. 

. .  . .  
1 ,  . ’ . I .” .  . . 

1 I 2  , . . .  . . . . .  
I ,  
l o  2 %  
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. . ; . , . _ . . . . . I  I 

. ‘  . . . , . . . .  . .  
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Figure 6. Time depcndence of the electric fielcl 
f o r  Ay  = 6. 1 and AT = 0.  01 a t  200 kin.  
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Figure 7. Time dependence of the electr ic  field f o r  
Ay 1 0. 01 and A T  = 0. 001 a t  200 kin. 

NOND~MENS~DNAL TIME IT1 

Figure 8. Constant ion density contours 
at 200 kin. 

in addition, we must satisfy the criteria f o r  stability 
given in equation (27).  Therefore, f o r  an accurate,  
stable solution, we must have A T  < Ay << 1. 

The above conditions, unfortunately, could not 
be completely complied with on the particular com- 
puting machine used. Smaller increments require 
a greater  number of i terations,  which in  turn 
require more computer lime. 
necessary to use the rather  large increments, 
Ay = 0.1 and A T  = 0.01. 

It was therefore 

The effect of using these increments can be 
seen i f  we consider the order  of the t e r m s  dropped, 
h3, and the number of iterations. The missing 
t e r m s  are on the order  of 0.001 in space and 
0.000001 in time. The number of i terations 
required in space and time are 100 and 400, 
respectively. Hence, f rom this source alone, 
the accumulated e r r o r  at equilibrium is on the 
order  of 0 . 1  and 0.0004 for  the two dimensions. 
This,  coupled with machine roundoff e r r o r  (which, 
using standard e r r o r  analysis, has an accumulated 
value on the order of 0.0001) can easily account 
for  the disc re pane ie  s in the quas i-e y uilibr i u i n  nncl 
steady-state solutions. 

SOLUTION OF CASE I I 

Appl icat ion of Equations a n d  
Bo u nda ry  Condit ion s 

This second case  t reats  thc probleni of a plate 
that is initially in equilibrium with the strcaniing 
plnsnia for  a given se t  of physical pnranieters.  
plasma parameters  then undergo a s tep change. 
The time-dcpentlent equations derived in the 
L)EIUVATION OF EQUATIONS section are  invoked 
to investigate the nature of the interaction that 
follows as the plate adjusts to the new plasma 
e nv i r on men t . 

The 

This problem i s  described by the same set of 
time-dependent equations as Case  I; namely 
equations (11) , (12 ) ,  and (13).  For convenience, 
the physical constants corresponding to an altitude 
of 200 kin and the steady-state distribution of the 
plasma parameters  found in Case I are used as the 
boundary condition for  this case  a t  t = 0. After 
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the s tep change, the physical constants and plasma 
pa rame te r s  corresponding to an altitude of 3000 km 
are used (Table 3).  We still require  that at an 

'Value 
- 

3000 

7 x  io9 

1 0 0 0  

4 

96.2 

6.520 

5.2166 

6. 6073 

8.00 x 10- 
~- 

TABLE 3. CASE 11 PARAMETERS 

- 
3ymbo. 
__ 

N 

Te 

ni  

U 

VS 

L 

T 

Paranie ter 

Altitudea (km)  

Ion-Electron Densitya (n1r3) 

Temperaturea (KO) 

Average Ion Mass' (Amu) 

b Average Electron Velocity (km/sec 

Satellite Velocity" (1uii/sec) 

Debye Lengthb (cm) 

Potential   actor^ (vol t /m) 

Tiiiie Factor ( scc)  b 

- ~ -. 

a. From Table 1 

b. C a l c t h t c d  Vnlues 

infinite distance f rom the plate, the electric field 
vanish, the nondiniensional ion velocity and density 
be unity, and a t  the surface of the plate, the electric 
field be given by equation (14). 

The steady-state equations can be used as in 
Case I to  obtain the equilibrium values of the f i r s t  
plasma state directly. This wi l l  provide the initial 
boundary conditions a t  t = 0 in a fo rm that can be 
fed directly into the program f o r  the time-dependent 
equations. 

The program for  the solution of this case,  which 
is a combination of the steady-state and tinie- 
dependent programs used in the previous chapter,  
is provided in Appendix C. Its  operation is 
described sufficiently there. 

Case I1 Resul ts  

The curve and data points given in Figure 9 
represent  the quasi-equilibrium ( t  = 30.5 ps )  and 
steady-state solutions for  the electric potential 
respectively. A comparison of these resul ts  
shows good agreement between the time-dependent 

CUASI-EWILIBRIUY POTENTIAL __ 
STEADY.STATE POTENTIAL 

I 1  

W D I Y E H S I W A L  DISTANCE FROY PLATE (I) 

Figure 9, Spatial distribution of electric 
potential at 3000 km. 

7 

and steady-state solutions for  this case.  Note that 
the electr ic  potential has  a greater  magnitude than 
in Case I. 
to be 7 .3  cm,  which is also greater  than in Case I. 
Therefore the effect of increasing the satell i te 
altitude f rom 200 to 3000 km has apparently been 
to magnify the sheath dimension. 

Further ,  we find the sheath thickness 

The t ime and spatial distribution of the ion 
density and velocity a r e  given in Figure 10. 
quasi-equilibrium solutions a r e  represented by 
curves and the steady-state solutions by data 
points. 
nient than in the previous case  (Figure 3).  This 
is probably because the transition in the plasma 
pa rame te r s  is l e s s  drastic.  Note that the change 
in ion density and velocity near  the plate is about 
50 t imes greater  than in Figure 3. This would be 
expected since we have already observed the electric 

greater  in this case.  

The 

These parameters  show much better agrce- 

field and electric potential to be considerably 1 

The effect of varying increment size on the 
spatial  behavior of ion density and velocity is shown 
in Figure 11 for  T = 0.35. 
s ame  effect in time for  the ion density and velocity 
at the plate 
IO, the quasi-equilibrium solution decreases  a t  a 

I 

Figure 12 shows the 

(y = 0 ) .  Notice that in Figures  3 and 
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21.1 

1.0 

f t .P 
I 

$ .a 

1 2 3 ,  3 6 7 8  
a .I 

N011DIMfNSIONAL DISTAMCE FROH P L A l E I Y l  

Figure 10. Ion density and velocity spatial  
distribution at 3000 hi. 

NONOIYENSIONAL D I S T A N C E  FROH 

Figure 11. Effect of increment s ize  on 
accuracy .of spatial  dislribution. 
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NOHOIMENSIONAL T I M E  (1) 

Figure 12. EIfect of increment s ize  on 
accuracy of time dependence. 

slower ra te  than the steady-state solution. From 
Figure 11 it is apparent that one effect of reducing 
increment s ize  is to increase the ra te  at which the 
time-dependent solutions decrease in space,  thus 
tending to compensate for  this discrepancy. The 
(lata shown in Figure 11 occurs  ralher early in the 
interaction (T  0.35) so  that the end effect on the 
quasi-eyuilibrium solution ( T  3 .  81) must be 
extrapolated. However, Figure 1% indicates that 
the effect of the tlecrcased incrcnient s ize  will be 
more pronounced as  the interaclion progresses .  

The time dependence of the surface charge 

The 
density on the plate (Fig.  13) indicates an 
interesting effect not observed in Case 1. 
surface charge density does not increase uniformly 
toward equilibrium as expected, but begins to 
decrease after an overshoot ear ly  in the interaction. 
The overshoot of surface charge density, which 
reaches i t s  peak value a t  T = 0. 8,  is the resul t  of 
the electron interaction. The surface charge then 
begins to decrease slowly f rom the peak value as 
some of the negative charge on the plate is 
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-------- 

Figure 13. Growth of surface charge on plate 
at 3000 km. 

effectively neutralized by the ions. 
of the ions is well demonstrated by this effect. 

The inertia 

Figures 14 and 15 give the time dependence of 
the electr ic  field very early in the interaction a t  
various spatial  positions. 
distances f rom the plate that were observed in 
Case I (Fig. 6 )  are not found here;  however, 
there  is a slight overshoot at y = 4.1 and y = 5.1. 

The fluctuations at large 

Probably, whether merely an overshoot o r  fluctuations 
are observed depends upon the magnitude of the s tep 
functions used to represent  changes in plasma param- 
e te rs .  
is caused by ions, as previously discussed. In 
Figure 1 4  we see,  however, that the point in time 
at which the electric field achieves its maximum 
value var ies  with distance from the plate. Apparently, 
the ions neares t  the plate, which are consequently 

The gradual decrease late in the interaction 

Figure 14. Growth of electric field at y = 0. 5 
and y = 1.0 at 3000 km. 

I 

I I 

Figure 15. Growth of electric field a t  y = 4. 1 
and y = 5. 1 at 3000 kin. 

OISTAHCE FROM PLATE (I 1 

Figure 16. Growth of electric potential in space 
f o r  transition f rom 200- to 3000-km orbit. t 

exposed to the greatest  electric potential, experiencc 
an acceleration ear l ie r  than ions located far ther  
away. 
increasing distance f rom the plate. 

Hence the effect of the ions is fel t  later at  

Figure 16 gives the spatial  dependence of the 
electric potential a t  various stages of the interaction, 
thus showing the approach of the solution to 
equilibrium. 
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DISCUSSION 

Summary 

To gain some insight into the behavior of the 
ionospheric plasma directly ahead of the stagnation 
point on a satellite, a kinetic treatment of the prob- 
lem was car r ied  out, based on two uncoupled, 
collisionless Boltzmann equations, corresponding 
to the two ionospheric species considered (ions 
and electrons).  
of the problem was based on the assumption of an 
infinite, flat, conducting plate representation of the 
satellite; a uniform ion velocity distribution in time 
and space; a Maxwellian distribution of electron 
velocity; and an instantaneous relaxation of the 
electrons. With these assumptions, the equations 
of transport  derived from the two Boltzmann 
equations and a form of Gauss' law were used to 
obtain a s e t  of four coupled differential equations 
which can be solved numerically to obtain the 
time-dependent plasma parameters .  

The formulation of this treatment 

Thc Pirst case  to which these equations were 
applied consists of a grounded, conducting plate 
oriented perpendicularly to the plas nia flow, which 
is allowed to float electrically a t  time to. The 
reaction resulting as the plate iiioves toward an 
equilibrium state w i t h  the plasma i s  very s imi la r  
to the type of reaction that occurs on Iloard satell i tes 
when the potential a t  sonic point on the surface is 
periodically pulsed off and on by instrumentation, 
such as an emissive plasma probe. 

The second case ,  for which a solution was 
obtained, t rea ts  the problem in which the plate is 
initially taken to be a t  some preestablished 
equilibriuin state. A t  time to, the plasma 
parameters  undergo a step change and a time- 
dependent interaction follows a s  the plate moves 
toward a new equilibrium state compatible with 
its new plasma environment. 

This case  is particularly applicable to the 
behavior of the sheath region ahead of a satellite 
a s  i t  passes over the terminator;  through a radiation 
belt o r  anomaly; o r ,  within certain l imits,  undergoes 
a change in orbital attitude [ 221. 

Conclusions 

The results of the two cases  discussed above 
enable us to s ta te  the major events and parameters  
of the time-dependent interaction and to draw the 
following conclusions: 

a. The plasma sheath thickness changes f rom 
0.33 cin at 200 km to 7.3 c m  at 3000 km. A t  
200 km the sheath grows f rom zero  when the plate 
is grounded to its equilibrium value in 1.42 p s ,  
whereas the transition f rom equilibrium at 200 km 
to an equilibrium state at 3000 km requires 30.5 p s .  
This would indicate that the relaxation time is 
inversely proportional to the plasnia flux to the 
plate (both satellite velocity and plasma density 
decrease in the transition f rom 200 km to 3000 kin). 

b. When plasma parameters were varied step- 
wise, an initial overshoot w a s  observed in the re- 
sponse of the plasma sheath and surface change on the 
plate. This overreaction of the plasma occurred very 
early and dampened out quickly, permitting the plate 
to continue toward equilibrium in a steady manner. 

c .  One further event, which occurred before 
ecluilibrium was attained, i s  worth noting. 
surface charge on the plate reached a peak negative 
value, G. 1 p s ,  al ter  the step transition f rom param- 
e t e r s  a t  200 l cm to those a t  3000 lcni initiated the 
interaction. F rom this point, the surface charge 
niovcd toward an equilibrium value of l e s s  magnitude. 
This cvent i l lustrates the delay in the response of 
the ions and their influence on the interaction. 

The 

d. The equilibrium potential on the plate was 
found to be 0. O G  V a t  200 lcni and 0 .  4G V at 3000 1m1. 
This i s  seen to be in good agreenient in both forni 
( 5  L = IcT /q)  and ningnitude with the predictions 

of YA. L. Al 'Per t  et al. [ 2 3 ] .  

From the preceding tliscussion, it  can be 
concluded that the general behavior of the plasma 
sheath directly ahead of the frontal stagnation point 
on a satellite is very close to that expected from 
physical arguments. In addition to confirming this 
general, qualitative behavior, the study presented 
here  produces a more exact, quantitative description 
of the interaction that can be applied to many prob- 
lems  with interesting and physically meaningful 
applications. 

George C. Marshall Space Flight Center 
National Aeronautics and Space Administration 

Marshall Space Flight Center,  Alabama 35812, October 9, 1969 
124-09-00-00-62 
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APPENDIX A 

A PROGRAM FOR THE STEADY-STATE SOLUTIONS 

This program is written specifically for the 
steady-state equations of the Steady-State Simplifi- 
cation section in the text. 
explanation of its operation, it wil l  be divided into 
six parts.  

To facilitate a c l ea r  

The physical parameters  and constants in the 
f i r s t  portion of the program wil l  determine the exact 
physical problem to be solved. Therefore, the 
physical plasma parameters ,  temperature (XT) , 
average ion inass (XMAS), and satellite velocity 
( X U ) ,  must be properly assigned. The remaining 
paranieters w i l l  be calculated f rom these, and the 
physical constants do not change. 

The second portion consists of only two state- 
ments. 
on the plate, and the second determines how closely 
this value must be approached. 

The f i r s t  calculates the electric potential 

In the third par t  of the prograin, a smal l  
potential, VX1, is assumed to exist f a r  from the 

plate. This potential, VXI,  is defined by the f i r s t  
statement. The following statement defines the 
slope at this point, and the las t  statement calculates 
the potential at the next adjacent point. 

In the fourth section, the potential is calculated 
at points increasingly near the plate. 
culated value exceeds V X O ,  the process is terminated. 
If the difference between the solution and V X O  is 
DELT o r  l e s s ,  the program goes to the next sectinn; 
if not, VX1 is changed slightly, and the process is 
repeated until the proper value of the potential a t  
the plate is achieved. 

When a cal- 

The next section merely reverses  the potential 
and increment a r r a y s  so that the value a t  the plate 
becomes the f i r s t  component. 

The las t  section calculates the values of ion 
density (XN) and velocity (W) at each point and 
prints out the results. 
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STEADY-STATE PROGRAM 

N- 3 
N M Z l  
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  * * * * * * + *  **  ** ****  **  **  **  * * *  C 

C P H Y S I C A L  PARAMETERS AND CONSTANTS 

C * * * * * * * * * * * *  . . . . . . . . . . . . . . . . . . . . . . . .  ** **  * *  ** $ 8  **  * * * * *  
X T = l ( ? O t r -  
X#RS=28. *(  1 - 6 7  2 5  2* 10 .* *( -2 7 )  1 
xu=8 . 0 4 5 c *  1 0 . * * 3  
E M = 9 - 1 0 9 1 *  10 .**( -3  1) 
X E = 1 * 6 0 2 * 1 D . * *  (-19) 
XK=1.38*1fl.**(-233 
X Y  Z =  ( X K *  XT ) /  ( ( 2.) * ( 3 . 1 4 1  59 I *  E M  1 
UE=SQRT(  X Y Z )  
u= ( U E /  xu 1 
E P S X = X K * X I / (  X M A S * ( X U * * 2 )  1 

C * * * * * *  . . . . . . . . . . . . . . . . . . . . . . . .  * * * * * * * *  **  * *  ** * *  **  **  * *  * 

C V X O  I S  T H F  P O T E N T I A L  O N  T Y E  P L A T F  

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * *  * * * *  * * * *  * 
V X O =  (. 5) * A L O G  I 1. /U  1 
D E L T = . 0 0 1  
* *  * *  * *  * * * *  * *  * *  * *  * *  * *  * *  * *  * * * *  * *  * * * *  * * *  * *  **  ** * *  * *  * *  * *  * C 

C V X 1  IS S M A L L  P O T E N T I A L  ASSUYFD AT 5 O M E  9 O I N T  I N  SPACE 

C . . . . . . . . . . . . . . . . . . . . . .  * *  * * * * * * * * * * * * * * * *  * * * *  * * * * * * * * *  
v x  1=-. uODn 1 
S L O P X = S Q Q T ( l  . + E D S X ) + V X l  
DY =. 1 
Y I N C  (1  ) = D Y  
Y I N C  ( 2  ) = D Y  

5 C O N T I N U E  
v ( l ) = v X l  
V (  2 )  = S L O P X * o Y + V I  1)  

C 

c THE F O L L O U I N G  PROGRAV FXPANDS THC S O L U T I O N  q A C H  T O d A R O  
C TL(E P L A T E  U N T I L  V X C  TS REACHF9.  

* * * * * *  * * * * * * * * * * * *  * * * * * * * *  * *  **  * *  * *  * *  * * * * * * * *  * *  * *  * *  * *  * 
c 

P 
1 * *  * * * *  * *  * *  * * * * * * * * * *  * *  * * * * * *  **  * *  * *  * * * * * * * * * * * * * * * * * * *  

I= 1 
i r  CONTINUE 
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C A R R A Y  I S  R E V E R S E D  TO M A K E  V (  l ) = V Y "  

C . . . . . . . . . . . . . . . . . . . . . . . .  * * * *  * *  **  * * * *  **  * *  **  ** **  * *  * *  * *  * 

M I D =  ( M M +  11 /2 
DO 4 0  J Z I r M I I ?  
K = M M + l - J  

30 MH=I+2 

T T = Y I N C (  J )  
Y I N C ( J I = Y I N C ( K  1 
Y I N C  ( K  1 -TT  
T = V ( J )  
V ( J ) = V ( K )  

4 0  V I K O - T  
M - M M  

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C I O N  D E N S I T Y  AND V E L O C I T Y  A R F  C A L " ' J L A T E 3  

C + *  * * * *  * *  * * * * * * * * * * * * * *  ** * * * * * *  * *  * * * *  * *  t* * *  **  * *  * * * *  * *  * 
DO 6f' I z l r M  
X N  ( I  1 = 1. / S Q R T (  1. -2 .* FDSX * V  ( I 1 1  

W R I T E ( N Y ~ C I  
6 0  h'( I) Zl . / X N  (I 

( I r Y I N C (  I )  r V  (I)* XN ( T l r V (  I) V I - 1  r Y r N M )  
7 0  F O R M A T  ( S X ' X Y C R E M E N T  P O T F Y T I b L  R E L .  ' 7 F N S I T Y  

1 R E L I  V E L O C I T Y  * / I / / (  T' ; rFq .  5 r 3 E 1 0 . 7  
5TOP 
E N D  
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APPENDIX B 

A PROGRAM FOR THE CASE I TIME-DEPENDENT SOLUTION 

The program that follows is designed to solve 
the time-dependent equations of the Nondimensional 
Time-Dependent Equations section in the text. It 
is divided into six sections. 

The f i r s t  section contains the various constants 
that determine step size and allowable e r r o r .  
particular in te res t  a r e  the constants DY and DT, 
which determine the space and time increment s izes  
respectively. Other constants of in te res t  are:  M, 
which determines how many values in the space 
curves a r e  printed; MM, which determines the 
a r r ay  size;  DELP, DELD, and DELV, which a r e  
the allowable e r r o r s  in the potential, ion density, and 
ion velocity solutions respectively; and LL, which 
determines how many of the time steps w i l l  be printed 
out. 

Of 

The second section consists of the appropriate 
values of the plasma parameters  and physical con- 
stants. 
dimensionalize the variables a r e  also calculated in 
this section and printed out. 
values a r e  self-explanatory. 

The values of the factors used to non- 

The names of these 

The third section se t s  the initial conditions of 
the electric field, ion density, and velocity. 
values form the f i r s t  set of variables in time and a r e  
fed directly into the fourth section, which is se t  up 
to calculate the f i r s t  two values of each time ar ray .  
A s  pointed out in the APPLICATION O F  NUMERICAL 
METHODS section, the first two values cannot be 
calculated by many of the more accurate numerical 
methods. 

These 

Section five contains the bulk of the program. 
Here the remaining values of the a r r ay  a r e  calcu- 
lated and tested for convergence in space. 
value in the electric field array is then printed, and 
the solution moves to the next time increment. 

The f i r s t  

Section six contains the test  for convergence in 
time and al l  the print  statements for  the variable 
a r r ays .  Every LLth time step is printed out, plus 
whatever step the solution converges on. The con- 
vergence c r i te r ia  in this section wil l  not be satisfied 
unless E, D, and V have reached certain miniinuni 
differences in time. 
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CASE I. TIME-DEPENDENT PROGRAM 

D I M E N S I O N  E ~ 1 0 0 ~ 2 ~ ~ D ~ 1 O 0 ~ 2 ~ ~ V I I n ~ ~ Z ~ ~ P ~ l ~ O ~  
. . . . . . . . . . . . . . . . . . . .  * * * *  ****  **  * * * * * *  *+ * * + *  **** **  ****  * 

S F C T I O N  1 

* * * * * * * * * *  **  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ** * * * * * * *  
N= 6 
DY =. E 1  
OT=.  fl13 1 
M= 10 
M H = l P U  
DEL= 1 .  * l o .  ** ( - 8  1 
JIMZC: 
DELP=. DODO 1 
D I F P = D E L P +  1. 
OELD=. OOOOPl  
OELVZ.  OODOD1 
K K = 1  
JJ=lC: 
JZJJ-1 
LL=5 
L = O .  
E S l = C .  
E s o z r .  
U = l .  
* * * * * *  * *  * * * * * * * * * * * * * *  ** * * * * * *  * * * * * * * * * * * *  **  * *  * * * * * * *  

S F C T I O N  ? 

* * * *  * *  * *  * * * *  **  * *  * *  * *  **  * *  * *  * *  * *  * *  **  * *  * *  **  * *  **  **  * * * *  * *  * 
X K = 1 . 3 8 0 5 4 * 1 0 . * * ( - 2 3 1  

E M = 9 . 1 0 9 1 *  l o . * *  1 - 3 1  1 
T Z 8 0 f " .  

~ 1 ~ = ~ 4 . * r i . 5 7 ~ 5 ~ * 1 0 . + .  ( - 2 7 ) )  
V 5 = 7 . 7 0 0 * 1 O . * * ( 3 )  
E V R = ( X K * T )  I (  ( 2 . 1  * (  3 . 1 4  1 5 9 )  * E M )  
V A = S G ? T ( E V R )  
A L P H A = ( X K * T )  / (  X I M *  I V S * * 2  1 )  
U= ( V A / V S  1 
X N N = S . * l C . * * ( I l )  
E D S = 8 . & 5 4 7 * 1 @ . * *  1 - 1 2 )  
a z r .  6ciz i  *i o. **  ( - 1 3  I 
X Y Z = F P S * X K * T / (  r ( 5 * * 2 )  + Y N Y I  
X L = S B R T (  X Y Z )  

26 



S3UIC=Q* XNN* X L / E P S  
O T T = D T * X L / V S  
D X = O Y * X L  
W R I T E ( N r  1 )  X L r S Q U I G r @ T T r D X r V A  
F O R M A T  ( 2 x 9  3 H X L -  r E l  4-59 3X r 6 H S Q U I Z = r  €14,5r 7X * 4  HOTT-r  F14. S r  3X r 3 H D X z  r 1 

IF14.5r  3X r 3 H V A =  ~ € 1 ‘ 4  .S 1 
. . . . . . . . . . . . . . . . . . . . . . . .  * * * * * *  * * * * * *  * * * * * * * *  * * * * * * * * *  

* * * * * * * * * * * *  * * * * * * * *  * *  **  * * * *  **  **  * * * *  * *  ** * *  ** **  * * * *  * *  * 
DO I D  I=IrHH 
E (  I *  1 1 = 0 .  
D (  Irl)=l. 

1 0  v ( I r l ) = l .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * * * *  * 

S E C T I O N  I, 

S E C T I O N  5 

. * ****  * * * * * *  * * * * * * * * * *  * *  * * * *  **  **.*** * *  * *  * *  **  * *  * *  * *  * * *  
E S Z Z - A B S  ( 4 PROX -EE 1 

T E S T = E ( I + l  r 2 )  
IF ( T E S T )  3 4 9  34 r 3 Z  

E (  I + l r  2)=F(I-1 * Z ) + Z . * ( D (  I * Z ) - C X P  ( F S z * D Y )  ) * P Y  

3 2  C O N T I N U E  
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E ( I +  1 r 2 1 =c! 0 

54 C O N T I N U E  
E E = E E +  ( E  ( I + l r 2  ) - E l 1 1  2 )  ) /?.+E ( I + 1  r ? )  

1=1+ 1 
T E S T = €  ( I + 1  r l )  
I F  ( T E S T )  36,35 r 3 6  

D( X I 2 1  =1. 
V ( X r 2 ) Z l o  

35 C O N T I N U E  

GO T O  3 8  
3 6  C O N T I N U E  

G ( I r Z ) = ( D ( I - l v  l ) + O ( I + l r l  ) ) / Z . + ( D ( T r l I * ( V f I + l  r l  ) - V (  1 - 1 9 1 )  ) + V ( T r l )  * 

V (  I r 7 ) = ( V (  1 - 1 9  1) + V ( I + 1  r 1  1 )  / Z . + V f  I r  l ) * ( V ( I + l r  1 ) - V ( I - 1  r l l ) * O T /  
1 ( D ( I + l  r l  ) - O ( I - l * l )  ) ) * O T / ( 2 . * @ Y )  

1 (2 . * C Y  ) - A L P H A *  ( E  (1-1 11 )+E ( I+ I r  1)  ) * D T / 2  
7 8  C O N T I N U E  

NNZMP- 1 
I F  ( I -NN 1 

GO TO 30 
C 0 N T I N U E 
E ( I + I r 2 ) = E ( I - l  r Z ) + Z . * ( @ (  I I Z ) - E X P ( ~ S ~ * D Y )  ) * D Y  
T E S T : F ( I + l r Z )  
I F ( T E S T )  5 6 r 5 6 r 5 4  

E ( I +  1 * 2 1 =o 0 

E € = E F +  ( E  ( T + l  r 2  ) - E l  I r  2 )  I /  2. +F (I+l r 7 1  
O( I+ I *  2 )  =o (I .Z I 
V ( I * l * 2 ~  =v ( I t 2 1  
Y M = I + 1  
D I F A  = A  3 5  ( d PPOX -E E 1 
D E L T - P Y S  (EE*.O 1) 
I F f O T F A - D E L T I  7 0 r 7 ! ? r 6 ?  

P I F A = (  AP?OX-EE)  
APROXZAPROX-OIFA/W 
w=J+.5*w 
I- 1 
E F = E  (1 r 2  1 

4 01 50 r 5 C 
4 r  CONTIYUE 

5 C. 

5 4  C O N T I N U E  

5 6  C O N T I N U E  

6 P  C O N T I N U E  

GO T C  2 8  

nz1.c. 
71! C O h T l N U E  

W R I T F f  N r  P P  1 

* * * *  * * * *  * * * * * *  * * * * * * * * * *  * * * * * *  * *  * * * *  * * * *  * *  ** **  * * * *  * * *  
K K  r E ( 1  9 2  1 

.?r F O R Y b T ( G X * 2 2 H E L E C T R I C  FIFLL ’  d T  T T ~ F , Z X ~ I ~ ~ Z X ~ ~ H E ( ~ * ~ ) = ~ € I ~ O ~ )  

S F C T I O k  E 
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* * + * * * * * * * * * * * * * * * * * * * * *  * * * *  **  * * * * * *  * *  * * * *  **  **  * *  * *  * * *  
L = L +  1 
I F ( L - L L )  8 5 r 8 5 r 8 4  

5 4  C O N T I N U E  



01 F P  Z A BS (EE-ES 1 ) 
D I F D = A R S ( D ( l r Z 9 - 0 ( l r I )  1 
D I F V = A B S ( V ( l r 2 ) - V (  1.1)) 
IF~OIFP-DELP) 3 n n r  3 0 0 ~  8 5  

301! CONTINUE 
If ( D I F O - D E L 0 1  3 1 0 r 3 1 0 , @ 5  

3 1 @  CONTINUE 
I F ( D 1 F V - O E L V )  90r9C11R5 

8 5  CONTINUE 
J= J +  1 
I F  (J-JJ) 1 6 0  r 9 0 r 9 0  

4C CONTINUE 
J- 0 
W 9 I T E ( N r  100) K K  

NNZMM- 1 
SUMZE E 
00 1 1 C  I = l v Y N  
P ( I ) = S U M * D Y  

I F C S U M )  1109 1101 l a 4  

sun=r. 

P ( MM i = P  ( NN 1 
U Q I T E ( N r 1 2 0 )  ( I * P ( I )  r I = l r H P r M )  
FORMAT ( / / / 2 X  r S H P @ T E N T I A L / /  ( 6 x 9  1 5 r . ? 1 6 . 7 r I 6 r E 1 6 . 7 r  I 6 r E 1 6  - 7  r I E r  E l 6 . 7 9  

U R I T E I  N r  130) 

110 F O R M A T ( / / Z X r 2 5 H P L A S ~ A  PARAWETEPT P T  T I M E r Z X t  1 4 )  

S U M = S U ~ - ( F ( I * Z I + E ( I + l r 2 )  1/2. 

I C 4  CONTINUE 

110 CONTINUE 

1 7 C  
1 1 6  * E 1 5  - 7 )  1 

( I r E (  I* 2 )  V I - 1  r M M r  M )  

130 FORYAT ( / / / Z X  r l 4 H E L E C T Q I C  F I C L O / /  ( 6 X  r I 6  .E 16 -7 t I F *  E l  6 -  7 r  I 6  t F  1 6  - 7  t I G t  
1E16 .79  16 t F 1 6 - 7 ) )  

W R I T E l N ,  1 4 0 )  ( I r D ( I 9 2 )  ~ I Z ~ ~ Y H I I * )  
I Q C  FORMAT ( / / / 2 X r 1 8 H I O N  NUMi3ER r ) F Y S T T Y / /  ( 6 X t I S r E 1 6 . 7 r I 6 * E 1 6 . 7 r  I 6 t F 1 6 - 7  

I t I 6 * E 1 6 . 7 r  I 6 t E 1 6 - 7  1 )  
W R I T E (  N t  1 5 0 1  ( I  r V (  I t  2 )  P I - 1  r M P r  H )  

I S L  FORMbT ( / / / 2 X  r 2 0 H A V E R A G E  T O N  
1 E l b -  79 I5 t F 1 6 . 7 ~ 1 6 ,  € 1 6 . 7 )  1 

V E L O C I T Y  / /  ( 6 X a  I6 r E  1 6  - 7  9 1 6 1  €16.7 ,  I6 * 

U Q I T E (  N r  1 5 5 )  

IF ( L - L L )  1 6 0  r 1 6 G t 1 5 6  

I F  ( D I F P - D E L P  1 

W R I T E ( N r 3 1 5 1  

1 5 5  FORMbT ( / / /  1 

1 5 6  CONTINUE 

32fl COFiTINUE 

3 1 5  FORMAT ( 3 x 9  l l H P  CONVEQGES/)  

3 7 0 1  3 2 @ *  33G 

J I M = J I M + I  
3 3 r  CONTINUE 

IF ( D I F D - D E L D )  3 4 C r  3 4 F 1  3 5 0  

U R I T . F ( k r 3 4 5 )  
3 4 C  CONTINUE 

3 4 5  FORMAT ( 3 x 1  l l H D  CONVERGES/)  

75C. C O N T I N U E  
J I H = J T M * l  

IF ( D I F V - D E L V  1 3 6 0 r  360r  1 6 @  
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3 6 C  C O N T I h U E  

2 6 5  FORMbT ( 3 X p  l l H V  C O N V F R G E S / )  
W R I T E  ( N I  365) 

JIM= J I  H+  1 
IF f JIW-3 1 

DO 1 8 D  I = l t M M  
E( It 1) =E(ItZI 
O f  I I  1) = D ( I  9 2 )  

18c. V (  I t  1) = V ( ? t Z )  
ESO=ES 1 
ESl=fE 
EE=O 
K K = K K +  1 
JIMZC 
G O  TO 20 

l?C C O N T I N U E  
W R I T E (  N t  700) 

STOP 
E N D  

1609 1901 190 
1 5 2  C O h i T I N U E  

73t F O R M b T  ( 2 x 9  2 2 H E B U I L I B 4 l U M  CDN!3TTIPYC,  1 
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APPENDIX C 

A PROGRAM FOR THE CASE I I TIME-DEPENDENT SOLUTION 

The program in this appendix is designed to 
solve the general time-dependent problem treated 
in case II. 
time-dependent equations developed in the 
DERIVATIOTU’ OF EQUATIONS section f o r  any of 

In this form,  the program can solve the 

the various applications pointed out in the DIS- 
CUSSION. The program is divided into two sections 
f o r  the following discussion. 

The f i r s t  section essentially consists of a 
revised fo rm of the program presented in Appendix 
A. Here the variable a r r a y s ,  which were one- 
dimensional in Appendix A,  are written in a two- 
dimensional form so that they can be applied 
directly to the time-dependent portion of the pro- 
g ram in the form of initial conditions. In this f i r s t  
section, the physical constants and plasma param- 
eters constitute the initial conditions, o r  the initial 
plasnia state. 
a t  the f i r s t  of section two will constitute thc final 
plasma state.  

The constants and plasma parameters  

The second section of this program is almost 
identical to the program presented in Appendix B. 
Therefore, we will point out and explain the 
differences in the two here.  

The form and purpose of the var ious  constants 
are the same here  as in Appendix A. However, the 
values of the plasma parameters  have been changed 
in order  to formulate the problem described in 
the SOLUTION OF CASE I1 section. 

The par t  of the program referred to as section 
two in Appendix B has  been omitted here.  This 
section provided the boundary conditions, which 
are calculated in section one of this progrnm. 

The rcmaindcr of the program i s  identical to 
that presented in Appendix B and will therefore not 
be discussed fur ther  here.  
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CASE II. TIIME-DEPENDENT PROGRAM 

L I r M E h S l O N  Y I N C ( l O n F 1  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
' l? IMENSION E ( I G O C  r 2  1 D( 15FC 2 1 V ( I C K ?  r 2  1 t P ( l O C C  1 

S E C T I O N  1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

PLASMA S T A T E  1 PARAMETERS 

w = i ,  
M = 1 0  
K K Z G  
X U = 7 . 7 8 *  l F . * *  ( 3 )  
XT=RCC.  
E Y = 9 . 1 @ 9 1 *  l o . * *  ( - 3  1) 
X E r l  . F C Z * I O . * *  ( - 1 9 )  
X K  = 1 . 3 8 *  IC . * * (  - 2 3  1 
X Y A S r 2 4 * ( 1 . 5 7 2 5 2 * 1 0 . * * ( - 2 7 ) )  
DELTZ.C'O1 
E J S X z X K * X T / (  X M d S * ( X U * * Z )  1 
0 0 - 1 .  
v o = 1 .  
X Y  Z =  ( X K * X T  I /  ( ( 2.) * ( 3 . 1 4 1  5 9  1 
U E = S Q R T (  X Y Z )  
U = ( U E / X U )  
VXfl-  (. 5) * A L O G  I 1. / U )  
V X  11-. D O C 0 5  

1 

1 r 7 9  C O N T I N U E  
S L O P X - S Q R T  ( 1  . + E P S X  ) * V X  1 
DY- .  1 
D O  i c o i  ~ z i ~ i i n  
P( I) =E. 

1'71 C O N T I N U E  
P( 1 )  Z V X 1  
P( 2 )  =SLOPX * D Y + P  ( 1 )  
I= 1 

l 7 l q  C O Y T I N U E  
Y I N C  ( I +2 1 -0Y  
p (  I + 2 )  - 2  . * P (  I + 1 )  + ( " Y * * Z )  * E X P  (?(I+1 1 ) - ( G Y * * ? )  / S O S T (  l . - ? . * F P S X  

1 -? ( I 1 
D I F X = $ f 3 5 ( V X O - P ( 1 + 3 ) )  
I F  ( D I F X - D C L T  ) 

1 *? ( I + 1  

1 C 7 T  9 1  530, I? 15 
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I F 1 5  C O N T I N U E  
DTFX-VXO-P ( 1 + 2  I 
I F  (OIF X )  1 C 1 6 ,  I C  1 6  1 p 2  r 

1 = 1 + 1  
GO TO 1010 

v x 1 = v x 1 - . @ ~ o o c 1  
GO TC 1OPS 

H I D =  ( K M +  1 )  / 2  

1 P 1 E  C O N T I N U E  

l r Z 0  C O N T I N U E  

1 ? 3 ! 3  H M = I + 7  

DO 1 P 4 0  J Z l v P I C  
K=MM+'l -J  

Y I N C ( J ) Z Y I N C ( K  1 

T Z P C J )  
P (  J ) = D ( K  1 

00 1 r 6 0  I=l.MM 
V ( I v l ) = S f J R T (  l . - Z . * E P 5 X * P ( I I )  

W R I T E ( N I I Z )  K K  

TT-Y 7 N C (  J) 

Y I N C  ( K  ) = T T  

i r40  P ( K ) = T  

1 ? 5 C  O ( I ~ l ) = l . / V ( I ~ l )  

1 2  F O R M A T  ( / / Z X v Z 5 H D L A F M A  P 4 ? 4 M E T E Q S  A T  T IME.ZX*  I4 1 
* * * *  * *  * *  * *  **  * *  * *  * *  * *  * *  **  * *  * *  * *  * *  * *  * *  * *  * *  **  ** **  * *  * *  * *  * 

S E C T I O N  7 

* * * * * * * * * * * * * *  * * * * * * * *  * *  * * * *  * *  * * * * * *  **  * *  * * * *  **I*** **  

P L A S P A  S T A T E  2 P P Y A M E T E 2 5  

D Y r l C .  
D T = . C C l  
MMrRPO 
D E L = I . * l C . * *  ( - 8 )  
J 1 H - r  
O E L P = . C C S  
DELO-. C O @ O O I  
OELV-.  C I G C n O l  
L= 0 
LL-5  
K K - 1  
JJ= l "  
JZJJ-1 
E S 1 - P .  
ESCIIP. 
w-1. 

X K = l . 3 8 0 5 4 * 1 D .  * *  ( - 2 3  1 
T=4Oc"O. 
E M = 9 - 1 0 9 1 * 1 D . * * (  - 3 1 )  
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XNNZ7. * l C .  **  ( 9 )  
EPS=8.8542*1C.**  ( - 1 2 )  
G =  1 50 2 1 * 10. * *  (-  1 9  1 
X Y Z = F P S * X K * T / (  ( 3 * * 2 )  *XNN 1 
XL=SGRT(  X Y 7 )  
S Q U I G = Q * X N N *  X L / E P S  
D T T = G T * X L / V S  
D X r D Y  *XL 
W R I T E ( N r  1) X L r S O U I G r ' 3 T T t @ X  
FORMAT ( 2  X t  7HXL= t E l  4.5s 3X r 6  HS 3U 15 = r  E l  4-59 3X r 4  H D T T - r  E l  4 5 r  3X r 3 M Q X -  r 1 

1 E 1 4 . 5 )  
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t3 T O  28  
2 6  C O N T I N U E  

A P R O X = E S l +  ( E S l - E S O )  

3 @  C O N T I N U E  
E S Z = - A 3 S  ( A P Q Q X - € E )  

I F ( V ( 1  1 2 ) - V f  1 9  1)  1 

E ( I +  11 2 )  =E (1 +1 11 1 
ED T O  4 5 0  

4 3 0 1  U 3 0 1 4 4 f :  
4 3 C  C O N T I N U E  

4 4 C  C O N T I N U E  

4 5 P  C O N T I N U E  
E (  I + 1 1 2 )  =E ( 1 - 1 * 2 ) + 2 . * ( @ (  11 Z I - E X p  ( F S Z * O Y )  ) * P Y  

T E S T I E  ( I + 1  r 2  1 
I F  ( T E S T )  3 4 1  34 r 3 2  

3 2  C O N T I Y U E  
E (  I + l *  2 )  IC. 

3 4  C O N T I P l U E  
E E = E E +  ( E  ( I + 1  12  ) - E (  I r  2 )  I / ? .  + E  ( I + L  r 7  1 
1=1+1 
T E S T Y E  (I+l r l  1 
I F  ( T E S T )  3 6 ~ 3 5 1 3 6  

O ( I * z ) = l .  
V ( I . Z ) = 1 .  
G O  T C  3 3  

3 6  C O N T I N U E  
0 ( 1 ~ 7 ) = ( C ( I - l r l ) + D ( I + l  r l  ) ) / t . + ( q ( T * l ) * ( V ( I + l  r l  ) - V ( I - 1 * 1 1  ) + V ( I v  1) * 
v ( 1 1 7 )  = ( V ( I - l *  1) + V ( I + 1  r l ) )  / t . + V (  I1 l l * ~ v ~ I + l 1  1)  -v (1-1 1 1  ) ) * D T /  

3 5  C O N T I N U E  

1 ( 3  ( I  +1 11 )-3( 1-1 1 1 )  1 )  * I ) T /  ( 2  . * ? Y  I 

1 ( 2 . * O Y  ) - A L P H A * ( E ( I - l r l  ) + F ( I + l r  I )  ) * D T / 2 .  
3 8  C O N T I N U E  

N N Z H H -  1 
I F ( I - N N )  4 U 1 5 0 1 5 2  
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40 C O N T I N U E  
GO TO 30 

5 C  C O N T I N U E  

I F ( V ( I r Z ) - V (  l r  11 1 4 6 5 r 4 6 0 r 4 7 n  

E ( I + l r Z )  = E ( I + l r l )  
GO T(? 450 

E (  I + l r 2 )  =E (1-1 * 2 ) + 2 . * ( D (  I* 2 )  -EXP ( F S Z * O Y )  ) * D Y  

T E S T = E ( I + I  r 2 1  
I F ( T E S T )  5 E r 5 6 t 5 4  

E (  I+ 1 9 2 )  = e .  

060 C O N T I N U E  

4 7 r  C O N T I Y U E  

4 3 0  C O N T I N U E  

5 4  C O N T I N U E  

5 6  C O N T I N U E  
E E = E F +  (E ( T + I  l ~ ) - ~ ( ~ . ~ ~  )/z.+F: ( T + I  r 3 1  
@ (  I+ 1 1 . 2 )  =I? (I r Z 1  
V (  I+ 1.2) = v  I1 r Z )  
M Y Z I + l  
O I F A Z 4 8 S  ( A P R O X - E € )  
D E L T = A B S ( E E * . O l )  
IF~DIFA-~FLT) 7 o r 7 e r 6 0  

E.C C O N T I N U E  
P I F A - (  APROX-EE 1 

A P R O  X =  A P PO X- i? I F A / W  
WZJ+.5+k 
I= 1 
€ € = E  (1 9 2  1 
GO T @  2 0  

7C C O Y T I Y U E  
w-1.5 
Iw‘?ITE(  N I  P D  1 

L X L +  1 
I F t L - L L )  R 5 r 8 5 . 8 4  

84 C O N T I Y U E  
D I F P - A  8 S ( E € -  E S  1 ) 

D I F V Z A 8 S  ( V  ( 1  r 2 ) - V (  I r  1 )  1 

K Y  r E  ( 1  1 2  1 
9: F C R M b T ( G X r 2 2 H E L E T T D I C  FI€Ll ’  AT T T ~ E t 2 X r I 4 r ’ X r 7 H E ( I r 2 ) = r E 1 4 ~ 5 )  

DIFD-ASS (n ( 1  r z  ) - E (  i r  I )  1 

IF (DIFP-DFLP) 3oc r  3 0 r .  8s 
’3t C O N T I N U E  

T F ( D I F D - D E L 9 )  3 l r r  310r  E5 

If ( O I F V - @ F L V  1 9 0 r 7 P r 8 5  
E 5  C O N T I N U E  

J= J+ 1 

9 t  C O N T I Y U E  

7 1 c  CONTINUE 

IF~J-JJ) i 6 n r 9 r r 9 0  

J- J 
W R I T E ( N r  1 3 C )  K K  

... 
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l C @  FORMAT ( / / Z X r  25HPLASMA PARAWETEPS 4T  T I R E v Z X I  I 4  1 
“=ME- 1 
S U M = f E  
00 113 I T l r N N  
P ( I ) = s U W * D Y  
S U M = S U H - ( E ( I  * Z ) + € ( I + l r  2 )  ) / Z .  
I F  ( S U M  1 1101 1101 1 0 4  

1 0 4  CONTINUE 

I 1 C  CONTINUE 
SUM=O. 

P( MM 1 = P (  N N  1 
W R I T E ( N r  l t O 1  ( I r P ( I )  r I = l  t M w r M )  
FORMbT l / / / Z X  t S H P O T € V T I A L / /  ( 6 x 1  16 t E 1 6 - 7 * 1 6 *  E l  6.7. I 5  r E 1 6  - 7  r I 6 r  F16 .79  

U R I T E f  N V  1 3 0 )  
FORMAT ( / / / Z X  r l 4 H E L E C T R I C  

KZC’ 
1 1 6 ~ E 1 6 . 7  1 )  

( I r E (  11 2 )  r I = l t P f M ~  P) 
1 ~ C J  F I F L T J / /  ( 6 x 1  I 6  ~ € 1 6 . 7  * I F *  F 1 6 - 7 9  I 6 r E  1 6  - 7  r I 6 r  

l E 1 6 . 7 9  Z 6 r E 1 6 . 7 ) )  
U Q I T E ( N r  140) I I v @ (  I t  2 )  * I - 1  r M H * ? J )  

1 4 f i  F O R M h T ( / / / 2 X t 1 8 H I O N  NUMBER D ~ N Z I T Y / / ( 6 X t I 6 r E 1 6 . 7 . I 6 r F 1 6 . 7 r  I 6 r E 1 6  -7 
1 r I 6 r E 1 6 . 7 ~  I6 ~ € 1 6 . 7  1 )  

W R I T E ( N r  1 5 0 )  ( I r V ( I r ? l  t I = l  t M E t  M I  
15C F C R M P T ( / / / 2 X * Z ~ H A V ~ 8 A G €  I O N  V F L O C T T Y / / ( 6 X *  1 6 r E 1 6 . 7 r I K * E l F . 7 ~  1 5 9  

1 E 1 6 . 7 ~  I6 * E 1 6  - 7  V I E  t E l  6.7) ) 

W R I T E ( N *  155) 

I F  ( L - L L )  
1 5 5  FORMAT ( / / /  1 

1 6 0  r l 6 C  r 1 5 6  
1 5 6  C O N T I N U E  

CONVE26ANCE TEST 

IF(SIFP-OELD) 3 2 r r 3 2 r r  33r 
? Z C :  CONTINUE 

‘ 1 5  FORMAT ( 3 x 9  l l H P  CONVEDGES/ )  

? ? a  CONTINUE 

7 4 C  CONTINUE 

7 4 5  FORMAT ( 3 X v  l l H D  CCNVE?!iES/) 

7 5 r  C 9 N T I Y U E  

7 6 C  CONTIblUf I  

3 6 5  FCRMdT ( 3 x 1  l l H V  CONVERGES/ )  

W 9 I T F  ( NI 3 1  5) 

J I M =  J I M +  1 

If ( O I F D - O E L D  1 

W R I T E (  k r  745) 

3 4 O t  3 4 3 9  35r1 

J I M =  J I M +  1 

IF (SICV-DFLV) 3 6 e I  x r r  150 

W R I T C ( N r  3 6 5 )  

J I M Z J I i * I +  1 
I F  ( J I V - 3  1 1 6 0 1  19Q1 19ci  

1 6 C  CONTINUE 

. 
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R E S E T  F O R  NEXT T I M E  I T E R A T I O N  
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